2915/105
PHYSICAL CHEMISTRY I AND
CHEMICAL ANALYTICAL METHODS I
June/July 2023
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ANALYTICAL CHEMISTRY

MODULE I

PHYSICAL CHEMISTRY I AND CHEMICAL ANALYTICAL METHODS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL questions in section A and THREE questions from section B.

Each question in section A carries 4 marks, while each question in section B carries 20 marks.

Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks)

Answer ALL the questions in this section.

- State qualitatively the pH of an aqueous solution of ammonium chloride. (1 mark) 1. (a)
 - (3 marks) (b) Using an equation, explain the answer in (a) above.
- 1.00 g of AR potassium iodate was mixed with excess of acidified potassium iodide in a 250 cm³ volumetric flask and topped upto the mark with water. A 25.00 cm³ aliquot of the reaction mixture required 16.20 cm³ of sodium thiosulphate to reach the starch indicator end-point. The equation of the reaction taking place during the titration is

$$2\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_{2(aq)} \longrightarrow \text{Na}_2\text{S}_4\text{O}_{6(aq)} + 2\text{NaI}_{(aq)}$$
(RFM of potassium iodate = 214).

Calculate the molarity of the sodium thiosulphate solution. M = Man 1900 (4 marks)

- 3. List four methods of collecting samples for analysis in a chemistry laboratory. (4 marks)
- (4 marks) State four reasons of sampling in analytical chemistry. 4.
- 15/ Calculate the pH of 0.008 M HCOOH. (PKa = 3.75)

(4 marks)

- The vapour pressure of pure water at 96°C is 7.44 mm Hg. When 0.8 g of an organic solute 6. was dissolved in 180 g of water at the same temperature, the vapour pressure of the solution (4 marks) was 639 mm Hg. Estimate the formula mass of the organic solute.
- A sample of concentrated sulphuric acid has the following information on the label of the container.

M.wt	98.07
Assay	98
Specific gravity	1.94
SO ₄ ²⁻	0.02
PO ₄ ³⁻	0.03

W= 00002 JOXQ-CA1000

(4 marks)

Calculate the molarity of the acid.

When 2.56 g of sulphur was dissolved in 100 g of carbon disulphide (CS2), the freezing point 8. was lowered by 0.383 K.

Calculate the value of x in Sx.

27961.7 38.3'

$$(S = 32, K_f = 3.83 \text{ Kgmol}^{-1} \text{K}^{-1})$$

(4 marks)

The data in table I was obtained in an experiment to determine the amount of phosphate nutrients in soil samples in mg/1000 g.

Table I

Sample	Concentration of PO ₄ ³⁻ in mg/100 g	
1	22.8	1.9
2	28.1	
3	33.5	
4	19.2	
5	18.3	
6	23.8	
7 .	30.8	
8	31.1	
9	26.7	
10	17.3	
11	18.9	
12	28.3	

Calculate the:

2988

(a) mean;

9 5 · 7 (2 marks)

(b) standard deviation;

(16 marks)

(c) standard error.

(2 marks)

and Ed

Std= Efg = 2094.

1938-06

57d= 191.00) Vanance

A sample of concentrated hydrochloric acid has the following information on a label on the container.

M.wt	36.45
Assay	70
Specific gravity	1.14
Chlorides	0.05
Sulphates	0.01
Metal ions	0.01

Calculate the:

(a)	molarity of the acid;	(4 marks)
-----	-----------------------	-----------

Describe the preparation of 250 cm³ of 2 M HCl from the concentrated sample.

(11 marks)

Describe the preparation of 5 litres of dilute HCl of pH = 1 from the sample in (b) (c) above. (5 marks)

15. One of the raw materials used in the manufacture of soap is glycerol palmitate. (a)

- Name two other raw materials used in the manufacture of soap. (i) (2 marks)
- (ii) Explain the function of each of the raw materials named in (a) above.

(6 marks)

(b) Explain the functions of each of the following additions in soap.

- (i) perfumes; (2 marks)
- (ii) polyphosphates; (2 marks)
- sodium silicate; (iii) (2 marks)
- (iv) antibiotics; (2 marks)
- (v) colourants. (2 marks)
- (c) Explain one disadvantage of soaps. (2 marks)

THIS IS THE LAST PRINTED PAGE.